Siemens
Abstract:Sequential recommender systems rank relevant items by modeling a user's interaction history and computing the inner product between the resulting user representation and stored item embeddings. To avoid the significant memory overhead of storing large item sets, the generative recommendation paradigm instead models each item as a series of discrete semantic codes. Here, the next item is predicted by an autoregressive model that generates the code sequence corresponding to the predicted item. However, despite promising ranking capabilities on small datasets, these methods have yet to surpass traditional sequential recommenders on large item sets, limiting their adoption in the very scenarios they were designed to address. To resolve this, we propose MSCGRec, a Multimodal Semantic and Collaborative Generative Recommender. MSCGRec incorporates multiple semantic modalities and introduces a novel self-supervised quantization learning approach for images based on the DINO framework. Additionally, MSCGRec fuses collaborative and semantic signals by extracting collaborative features from sequential recommenders and treating them as a separate modality. Finally, we propose constrained sequence learning that restricts the large output space during training to the set of permissible tokens. We empirically demonstrate on three large real-world datasets that MSCGRec outperforms both sequential and generative recommendation baselines and provide an extensive ablation study to validate the impact of each component.
Abstract:Large Language Models (LLMs) have achieved significant success in complex reasoning but remain bottlenecked by reliance on expert-annotated data and external verifiers. While existing self-evolution paradigms aim to bypass these constraints, they often fail to identify the optimal learning zone and risk reinforcing collective hallucinations and incorrect priors through flawed internal feedback. To address these challenges, we propose \underline{A}utonomous \underline{E}volutionary \underline{R}easoning \underline{O}ptimization (AERO), an unsupervised framework that achieves autonomous reasoning evolution by internalizing self-questioning, answering, and criticism within a synergistic dual-loop system. Inspired by the \textit{Zone of Proximal Development (ZPD)} theory, AERO utilizes entropy-based positioning to target the ``solvability gap'' and employs Independent Counterfactual Correction for robust verification. Furthermore, we introduce a Staggered Training Strategy to synchronize capability growth across functional roles and prevent curriculum collapse. Extensive evaluations across nine benchmarks spanning three domains demonstrate that AERO achieves average performance improvements of 4.57\% on Qwen3-4B-Base and 5.10\% on Qwen3-8B-Base, outperforming competitive baselines. Code is available at https://github.com/mira-ai-lab/AERO.
Abstract:Although Key-Value (KV) Cache is essential for efficient large language models (LLMs) inference, its growing memory footprint in long-context scenarios poses a significant bottleneck, making KVCache compression crucial. Current compression methods rely on rigid splitting strategies, such as fixed intervals or pre-defined delimiters. We observe that rigid splitting suffers from significant accuracy degradation (ranging from 5.5% to 55.1%) across different scenarios, owing to the scenario-dependent nature of the semantic boundaries. This highlights the necessity of dynamic semantic splitting to match semantics. To achieve this, we face two challenges. (1) Improper delimiter selection misaligns semantics with the KVCache, resulting in 28.6% accuracy loss. (2) Variable-length blocks after splitting introduce over 73.1% additional inference overhead. To address the above challenges, we propose DynSplit-KV, a KVCache compression method that dynamically identifies delimiters for splitting. We propose: (1) a dynamic importance-aware delimiter selection strategy, improving accuracy by 49.9%. (2) A uniform mapping strategy that transforms variable-length semantic blocks into a fixed-length format, reducing inference overhead by 4.9x. Experiments show that DynSplit-KV achieves the highest accuracy, 2.2x speedup compared with FlashAttention and 2.6x peak memory reduction in long-context scenarios.
Abstract:Recent advances in autonomous LLM agents demonstrate their ability to improve performance through iterative interaction with the environment. We define this paradigm as Test-Time Improvement (TTI). However, the mechanisms under how and why TTI succeed or fail remain poorly understood, and existing evaluation metrics fail to capture their task optimization efficiency, behavior adaptation after erroneous actions, and the specific utility of working memory for task completion. To address these gaps, we propose Test-time Improvement Diagnostic Evaluation (TIDE), an agent-agnostic and environment-agnostic framework that decomposes TTI into three comprehensive and interconnected dimensions. The framework measures (1) the overall temporal dynamics of task completion and (2) identifies whether performance is primarily constrained by recursive looping behaviors or (3) by burdensome accumulated memory. Through extensive experiments across diverse agents and environments, TIDE highlights that improving agent performance requires more than scaling internal reasoning, calling for explicitly optimizing the interaction dynamics between the agent and the environment.
Abstract:Reinforcement Fine-Tuning (RFT) on flow-based models is crucial for preference alignment. However, they often introduce visual hallucinations like over-optimized details and semantic misalignment. This work preliminarily explores why visual hallucinations arise and how to reduce them. We first investigate RFT methods from a unified perspective, and reveal the core problems stemming from two aspects, exploration and exploitation: (1) limited exploration during stochastic differential equation (SDE) rollouts, leading to an over-emphasis on local details at the expense of global semantics, and (2) trajectory imitation process inherent in policy gradient methods, distorting the model's foundational vector field and its cross-step consistency. Building on this, we propose ConsistentRFT, a general framework to mitigate these hallucinations. Specifically, we design a Dynamic Granularity Rollout (DGR) mechanism to balance exploration between global semantics and local details by dynamically scheduling different noise sources. We then introduce a Consistent Policy Gradient Optimization (CPGO) that preserves the model's consistency by aligning the current policy with a more stable prior. Extensive experiments demonstrate that ConsistentRFT significantly mitigates visual hallucinations, achieving average reductions of 49\% for low-level and 38\% for high-level perceptual hallucinations. Furthermore, ConsistentRFT outperforms other RFT methods on out-of-domain metrics, showing an improvement of 5.1\% (v.s. the baseline's decrease of -0.4\%) over FLUX1.dev. This is \href{https://xiaofeng-tan.github.io/projects/ConsistentRFT}{Project Page}.
Abstract:While Large Language Models (LLMs) have achieved remarkable capabilities, they unintentionally memorize sensitive data, posing critical privacy and security risks. Machine unlearning is pivotal for mitigating these risks, yet existing paradigms face a fundamental dilemma: aggressive unlearning often induces catastrophic forgetting that degrades model utility, whereas conservative strategies risk superficial forgetting, leaving models vulnerable to adversarial recovery. To address this trade-off, we propose $\textbf{AGT$^{AO}$}$ (Adversarial Gating Training with Adaptive Orthogonality), a unified framework designed to reconcile robust erasure with utility preservation. Specifically, our approach introduces $\textbf{Adaptive Orthogonality (AO)}$ to dynamically mitigate geometric gradient conflicts between forgetting and retention objectives, thereby minimizing unintended knowledge degradation. Concurrently, $\textbf{Adversarial Gating Training (AGT)}$ formulates unlearning as a latent-space min-max game, employing a curriculum-based gating mechanism to simulate and counter internal recovery attempts. Extensive experiments demonstrate that $\textbf{AGT$^{AO}$}$ achieves a superior trade-off between unlearning efficacy (KUR $\approx$ 0.01) and model utility (MMLU 58.30). Code is available at https://github.com/TiezMind/AGT-unlearning.
Abstract:Astronomical imaging remains noise-limited under practical observing constraints, while standard calibration pipelines mainly remove structured artifacts and leave stochastic noise largely unresolved. Learning-based denoising is promising, yet progress is hindered by scarce paired training data and the need for physically interpretable and reproducible models in scientific workflows. We propose a physics-based noise synthesis framework tailored to CCD noise formation. The pipeline models photon shot noise, photo-response non-uniformity, dark-current noise, readout effects, and localized outliers arising from cosmic-ray hits and hot pixels. To obtain low-noise inputs for synthesis, we average multiple unregistered exposures to produce high-SNR bases. Realistic noisy counterparts synthesized from these bases using our noise model enable the construction of abundant paired datasets for supervised learning. We further introduce a real-world dataset across multi-bands acquired with two twin ground-based telescopes, providing paired raw frames and instrument-pipeline calibrated frames, together with calibration data and stacked high-SNR bases for real-world evaluation.
Abstract:The advancement of Large Language Model (LLM)-powered agents has enabled automated task processing through reasoning and tool invocation capabilities. However, existing frameworks often operate under the idealized assumption that tool executions are invariably successful, relying solely on textual descriptions that fail to distinguish precise performance boundaries and cannot adapt to iterative tool updates. This gap introduces uncertainty in planning and execution, particularly in domains like visual content generation (AIGC), where nuanced tool performance significantly impacts outcomes. To address this, we propose PerfGuard, a performance-aware agent framework for visual content generation that systematically models tool performance boundaries and integrates them into task planning and scheduling. Our framework introduces three core mechanisms: (1) Performance-Aware Selection Modeling (PASM), which replaces generic tool descriptions with a multi-dimensional scoring system based on fine-grained performance evaluations; (2) Adaptive Preference Update (APU), which dynamically optimizes tool selection by comparing theoretical rankings with actual execution rankings; and (3) Capability-Aligned Planning Optimization (CAPO), which guides the planner to generate subtasks aligned with performance-aware strategies. Experimental comparisons against state-of-the-art methods demonstrate PerfGuard's advantages in tool selection accuracy, execution reliability, and alignment with user intent, validating its robustness and practical utility for complex AIGC tasks. The project code is available at https://github.com/FelixChan9527/PerfGuard.
Abstract:Linguistic expressions of emotions such as depression, anxiety, and trauma-related states are pervasive in clinical notes, counseling dialogues, and online mental health communities, and accurate recognition of these emotions is essential for clinical triage, risk assessment, and timely intervention. Although large language models (LLMs) have demonstrated strong generalization ability in emotion analysis tasks, their diagnostic reliability in high-stakes, context-intensive medical settings remains highly sensitive to prompt design. Moreover, existing methods face two key challenges: emotional comorbidity, in which multiple intertwined emotional states complicate prediction, and inefficient exploration of clinically relevant cues. To address these challenges, we propose APOLO (Automated Prompt Optimization for Linguistic Emotion Diagnosis), a framework that systematically explores a broader and finer-grained prompt space to improve diagnostic efficiency and robustness. APOLO formulates instruction refinement as a Partially Observable Markov Decision Process and adopts a multi-agent collaboration mechanism involving Planner, Teacher, Critic, Student, and Target roles. Within this closed-loop framework, the Planner defines an optimization trajectory, while the Teacher-Critic-Student agents iteratively refine prompts to enhance reasoning stability and effectiveness, and the Target agent determines whether to continue optimization based on performance evaluation. Experimental results show that APOLO consistently improves diagnostic accuracy and robustness across domain-specific and stratified benchmarks, demonstrating a scalable and generalizable paradigm for trustworthy LLM applications in mental healthcare.
Abstract:Current region feature-based image captioning methods have progressed rapidly and achieved remarkable performance. However, they are still prone to generating irrelevant descriptions due to the lack of contextual information and the over-reliance on generated partial descriptions for predicting the remaining words. In this paper, we propose a Dual-Stream Collaborative Transformer (DSCT) to address this issue by introducing the segmentation feature. The proposed DSCT consolidates and then fuses the region and segmentation features to guide the generation of caption sentences. It contains multiple Pattern-Specific Mutual Attention Encoders (PSMAEs) and Dynamic Nomination Decoders (DNDs). The PSMAE effectively highlights and consolidates the private information of two representations by querying each other. The DND dynamically searches for the most relevant learning blocks to the input textual representations and exploits the homogeneous features between the consolidated region and segmentation features to generate more accurate and descriptive caption sentences. To the best of our knowledge, this is the first study to explore how to fuse different pattern-specific features in a dynamic way to bypass their semantic inconsistencies and spatial misalignment issues for image captioning. The experimental results from popular benchmark datasets demonstrate that our DSCT outperforms the state-of-the-art image captioning models in the literature.